Health Benefits and Chemical Composition of Matcha Green Tea: A Review (2024)

1. Pastoriza S., Mesías M., Cabrera C., Rufián-Henares J.A. Healthy Properties of Green and White Teas: An Update. Food Funct. 2017;8:2650–2662. doi:10.1039/C7FO00611J. [PubMed] [CrossRef] [Google Scholar]

2. Komes D., Horžić D., Belščak A., Ganić K.K., Vulić I. Green Tea Preparation and Its Influence on the Content of Bioactive Compounds. Food Res. Int. 2010;43:167–176. doi:10.1016/j.foodres.2009.09.022. [CrossRef] [Google Scholar]

3. Patel S.H. Camellia Sinensis: Historical Perspectives and Future Prospects. J Agromedicine. 2005;10:57–64. doi:10.1300/J096v10n02_08. [PubMed] [CrossRef] [Google Scholar]

4. Farooq S., Sehgal A. Antioxidant Activity of Different Forms of Green Tea: Loose Leaf, Bagged and Matcha. Curr. Res. Nutr. Food Sci. J. 2018;6:35–40. doi:10.12944/CRNFSJ.6.1.04. [CrossRef] [Google Scholar]

5. Horie H., Kaori Ema K., Sumikawa O. Chemical Components of Matcha and Powdered Green Tea. J. Cook. Sci. Jpn. 2017;50:182–188. [Google Scholar]

6. Schröder L., Marahrens P., Koch J.G., Heidegger H., Vilsmeier T., Phan-Brehm T., Hofmann S., Mahner S., Jeschke U., Richter D.U. Effects of Green Tea, Matcha Tea and Their Components Epigallocatechin Gallate and Quercetin on MCF-7 and MDA-MB-231 Breast Carcinoma Cells. Oncol. Rep. 2019;41:387–396. [PubMed] [Google Scholar]

7. Sano T., Horie H., Matsunaga A., Hirono Y. Effect of Shading Intensity on Morphological and Color Traits and on Chemical Components of New Tea (Camellia Sinensis L.) Shoots under Direct Covering Cultivation. J. Sci. Food Agric. 2018;98:5666–5676. doi:10.1002/jsfa.9112. [PubMed] [CrossRef] [Google Scholar]

8. Sharangi A.B. Medicinal and Therapeutic Potentialities of Tea (Camellia Sinensis L.) —A Review. Food Res. Int. 2009;42:529–535. doi:10.1016/j.foodres.2009.01.007. [CrossRef] [Google Scholar]

9. Unno K., Furushima D., Hamamoto S., Iguchi K., Yamada H., Morita A., Horie H., Nakamura Y. Stress-Reducing Function of Matcha Green Tea in Animal Experiments and Clinical Trials. Nutrients. 2018;10:1468. doi:10.3390/nu10101468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Kurleto K., Kurowski G., Laskowska B., Malinowska M., Sikora E., Vogt O. Wpływ Warunków Parzenia Na Zawartość Antyoksydantow w Naparach Różnych Rodzajów Herbat. Wiadomości Chem. 2013;67:11–12. [Google Scholar]

11. Mandel S.A., Avramovich-Tirosh Y., Reznichenko L., Zheng H., Weinreb O., Amit T., Youdim M.B.H. Multifunctional Activities of Green Tea Catechins in Neuroprotection. Modulation of Cell Survival Genes, Iron-Dependent Oxidative Stress and PKC Signaling Pathway. Neurosignals. 2005;14:46–60. doi:10.1159/000085385. [PubMed] [CrossRef] [Google Scholar]

12. Dufresne C.J., Farnworth E.R. A Review of Latest Research Findings on the Health Promotion Properties of Tea. J. Nutr. Biochem. 2001;12:404–421. doi:10.1016/S0955-2863(01)00155-3. [PubMed] [CrossRef] [Google Scholar]

13. Lutomski J. The effect of herbal remedies on the vitality of body. Postępy Fitoterapii. 2002;1–2:5–6. [Google Scholar]

14. Vinson J.A., Dabbagh Y.A. Tea Phenols: Antioxidant Effectiveness of Teas, Tea Components, Tea Fractions and Their Binding with Lipoproteins. Nutr. Res. 1998;18:1067–1075. doi:10.1016/S0271-5317(98)00089-X. [CrossRef] [Google Scholar]

15. Koch W., Kukula-Koch W., Głowniak K. Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time. J. Aoac. Int. 2017;100:1694–1699. doi:10.5740/jaoacint.17-0235. [PubMed] [CrossRef] [Google Scholar]

16. Benzie I.F.F., Szeto Y.T. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999;47:633–636. doi:10.1021/jf9807768. [PubMed] [CrossRef] [Google Scholar]

17. Bhutia Pemba; Sharangi Baran; Lepcha; Tamang Bioactive Compounds and Antioxidant Properties of Tea: Status, Global Research and Potentialities. J. Tea Sci. Res. 2015 doi:10.5376/jtsr.2015.05.0011. [CrossRef] [Google Scholar]

18. Jun X., Deji S., Ye L., Rui Z. Micromechanism of Ultrahigh Pressure Extraction of Active Ingredients from Green Tea Leaves. Food Control. 2011;22:1473–1476. doi:10.1016/j.foodcont.2011.03.008. [CrossRef] [Google Scholar]

19. Jun X., Shuo Z., Bingbing L., Rui Z., Ye L., Deji S., Guofeng Z. Separation of Major Catechins from Green Tea by Ultrahigh Pressure Extraction. Int. J. Pharm. 2010;386:229–231. doi:10.1016/j.ijpharm.2009.10.035. [PubMed] [CrossRef] [Google Scholar]

20. Pervin M., Unno K., Takagaki A., Isemura M., Nakamura Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and Its Metabolites. Int. J. Mol. Sci. 2019;20:3630. doi:10.3390/ijms20153630. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Prasanth M.I., Sivamaruthi B.S., Chaiyasut C., Tencomnao T. A Review of the Role of Green Tea (Camellia Sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 2019;11:474. doi:10.3390/nu11020474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Ohishi T., Goto S., Monira P., Isemura M., Nakamura Y. Anti-Inflammatory Action of Green Tea. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2016;15:74–90. doi:10.2174/1871523015666160915154443. [PubMed] [CrossRef] [Google Scholar]

23. Reygaert W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BioMed Res. Int. 2018;2018:9105261. doi:10.1155/2018/9105261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Du G.-J., Zhang Z., Wen X.-D., Yu C., Calway T., Yuan C.-S., Wang C.-Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients. 2012;4:1679–1691. doi:10.3390/nu4111679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Miura Y., Chiba T., Tomita I., Koizumi H., Miura S., Umegaki K., Hara Y., Ikeda M. Tea Catechins Prevent the Development of Atherosclerosis in Apoprotein E–Deficient Mice. J. Nutr. 2001;131:27–32. doi:10.1093/jn/131.1.27. [PubMed] [CrossRef] [Google Scholar]

26. Grzesik M., Naparło K., Bartosz G., Sadowska-Bartosz I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018;241:480–492. doi:10.1016/j.foodchem.2017.08.117. [PubMed] [CrossRef] [Google Scholar]

27. Koláčková T., Kolofiková K., Sytařová I., Snopek L., Sumczynski D., Orsavová J. Matcha Tea: Analysis of Nutritional Composition, Phenolics and Antioxidant Activity. Plant Foods Hum. Nutr. 2020;75:48–53. doi:10.1007/s11130-019-00777-z. [PubMed] [CrossRef] [Google Scholar]

28. Nish*tani E., Sagesaka Y.M. Simultaneous Determination of Catechins, Caffeine and Other Phenolic Compounds in Tea Using New HPLC Method. J. Food Compos. Anal. 2004;17:675–685. doi:10.1016/j.jfca.2003.09.009. [CrossRef] [Google Scholar]

29. Adnan M., Ahmad A., Ahmed D.A., Khalid N., Hayat I., Ahmed I. Chemical Composition and Sensory Evaluation of Tea (Camellia Sinensis) Commercialized in Pakistan. Pak. J. Bot. 2013;45:901–907. [Google Scholar]

30. Stefanello N., Spanevello R.M., Passamonti S., Porciúncula L., Bonan C.D., Olabiyi A.A., Teixeira da Rocha J.B., Assmann C.E., Morsch V.M., Schetinger M.R.C. Coffee, Caffeine, Chlorogenic Acid, and the Purinergic System. Food Chem. Toxicol. 2019;123:298–313. doi:10.1016/j.fct.2018.10.005. [PubMed] [CrossRef] [Google Scholar]

31. Mitani T., Nagano T., Harada K., Yamash*ta Y., Ashida H. Caffeine-Stimulated Intestinal Epithelial Cells Suppress Lipid Accumulation in Adipocytes. J. Nutr. Sci. Vitam. (Tokyo) 2017;63:331–338. doi:10.3177/jnsv.63.331. [PubMed] [CrossRef] [Google Scholar]

32. Čížková H., Voldřich M., Mlejnecká J., Kvasnička F. Authenticity Evaluation of Tea-Based Products. Czech. J. Food Sci. 2008;26:259–267. doi:10.17221/10/2008-CJFS. [CrossRef] [Google Scholar]

33. Białecka-Florjańczyk E., Fabiszewska A., Zieniuk B. Phenolic Acids Derivatives—Biotechnological Methods of Synthesis and Bioactivity. Curr. Pharm. Biotechnol. 2018;19:1098–1113. doi:10.2174/1389201020666181217142051. [PubMed] [CrossRef] [Google Scholar]

34. Weng C.-J., Yen G.-C. Chemopreventive Effects of Dietary Phytochemicals against Cancer Invasion and Metastasis: Phenolic Acids, Monophenol, Polyphenol, and Their Derivatives. Cancer Treat. Rev. 2012;38:76–87. doi:10.1016/j.ctrv.2011.03.001. [PubMed] [CrossRef] [Google Scholar]

35. Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., Xia F.F., Modarresi-Ghazani F., et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharm. 2018;97:67–74. doi:10.1016/j.biopha.2017.10.064. [PubMed] [CrossRef] [Google Scholar]

36. Jakubczyk K., Kochman J., Kwiatkowska A., Kałduńska J., Dec K., Kawczuga D., Janda K. Antioxidant Properties and Nutritional Composition of Matcha Green Tea. Foods. 2020;9:483. doi:10.3390/foods9040483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Hosseinzadeh H., Nassiri-Asl M. Review of the Protective Effects of Rutin on the Metabolic Function as an Important Dietary Flavonoid. J. Endocrinol. Investig. 2014;37:783–788. doi:10.1007/s40618-014-0096-3. [PubMed] [CrossRef] [Google Scholar]

38. Ghorbani A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharm. 2017;96:305–312. doi:10.1016/j.biopha.2017.10.001. [PubMed] [CrossRef] [Google Scholar]

39. Habtemariam S. Rutin as a Natural Therapy for Alzheimer’s Disease: Insights into Its Mechanisms of Action. Curr Med. Chem. 2016;23:860–873. doi:10.2174/0929867323666160217124333. [PubMed] [CrossRef] [Google Scholar]

40. Senggunprai L., Kukongviriyapan V., Prawan A., Kukongviriyapan U. Quercetin and EGCG Exhibit Chemopreventive Effects in Cholangiocarcinoma Cells via Suppression of JAK/STAT Signaling Pathway. Phytother. Res. 2014;28:841–848. doi:10.1002/ptr.5061. [PubMed] [CrossRef] [Google Scholar]

41. Costa L.G., Garrick J.M., Roquè P.J., Pellacani C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid Med. Cell Longev. 2016;2016:2986796. doi:10.1155/2016/2986796. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Babaei F., Mirzababaei M., Nassiri-Asl M. Quercetin in Food: Possible Mechanisms of Its Effect on Memory. J. Food Sci. 2018;83:2280–2287. doi:10.1111/1750-3841.14317. [PubMed] [CrossRef] [Google Scholar]

43. Eid H.M., Haddad P.S. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr Med. Chem. 2017;24:355–364. doi:10.2174/0929867323666160909153707. [PubMed] [CrossRef] [Google Scholar]

44. Carr A.C., Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9:1211. doi:10.3390/nu9111211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Jakubczyk K., Kałduńska J., Dec K., Kawczuga D., Janda K. Antioxidant Properties of Small-Molecule Non-Enzymatic Compounds. Pol. Merkur. Lek. 2020;48:128–132. [PubMed] [Google Scholar]

46. Suzuki Y., Shioi Y. Identification of Chlorophylls and Carotenoids in Major Teas by High-Performance Liquid Chromatography with Photodiode Array Detection. J. Agric. Food Chem. 2003;51:5307–5314. doi:10.1021/jf030158d. [PubMed] [CrossRef] [Google Scholar]

47. Kang Y.-R., Park J., Jung S.K., Chang Y.H. Synthesis, Characterization, and Functional Properties of Chlorophylls, Pheophytins, and Zn-Pheophytins. Food Chem. 2018;245:943–950. doi:10.1016/j.foodchem.2017.11.079. [PubMed] [CrossRef] [Google Scholar]

48. Ku K.M., Choi J.N., Kim J., Kim J.K., Yoo L.G., Lee S.J., Hong Y.-S., Lee C.H. Metabolomics Analysis Reveals the Compositional Differences of Shade Grown Tea (Camellia Sinensis L.) J. Agric. Food Chem. 2010;58:418–426. doi:10.1021/jf902929h. [PubMed] [CrossRef] [Google Scholar]

49. Unno K., Furushima D., Hamamoto S., Iguchi K., Yamada H., Morita A., Pervin M., Nakamura Y. Stress-Reducing Effect of Cookies Containing Matcha Green Tea: Essential Ratio among Theanine, Arginine, Caffeine and Epigallocatechin Gallate. Heliyon. 2019;5 doi:10.1016/j.heliyon.2019.e01653. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Kaneko S., Kumazawa K., Masuda H., Henze A., Hofmann T. Molecular and Sensory Studies on the Umami Taste of Japanese Green Tea. J. Agric. Food Chem. 2006;54:2688–2694. doi:10.1021/jf0525232. [PubMed] [CrossRef] [Google Scholar]

51. Dietz C., Dekker M. Effect of Green Tea Phytochemicals on Mood and Cognition. Curr. Pharm. Des. 2017;23:2876–2905. doi:10.2174/1381612823666170105151800. [PubMed] [CrossRef] [Google Scholar]

52. Fujioka K., Iwamoto T., Shima H., Tomaru K., Saito H., Ohtsuka M., Yoshidome A., Kawamura Y., Manome Y. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect. Molecules. 2016;21:474. doi:10.3390/molecules21040474. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Shishikura Y., Khokhar S. Factors Affecting the Levels of Catechins and Caffeine in Tea Beverage: Estimated Daily Intakes and Antioxidant Activity. J. Sci. Food Agric. 2005;85:2125–2133. doi:10.1002/jsfa.2206. [CrossRef] [Google Scholar]

54. Jeszka-Skowron M., Krawczyk M., Zgoła-Grześkowiak A. Determination of Antioxidant Activity, Rutin, Quercetin, Phenolic Acids and Trace Elements in Tea Infusions: Influence of Citric Acid Addition on Extraction of Metals. J. Food Compos. Anal. 2015;40:70–77. doi:10.1016/j.jfca.2014.12.015. [CrossRef] [Google Scholar]

55. Donejko M., Niczyporuk M., Galicka E., Przylipiak A. Anti-Cancer Properties Epigallocatechin-Gallate Contained in Green Tea. Postępy Hig. I Med. Doświadczalnej. 2013;67:26–34. doi:10.5604/17322693.1029528. [PubMed] [CrossRef] [Google Scholar]

56. Fujiki H., Watanabe T., Sueoka E., Rawangkan A., Suganuma M. Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: From Early Investigations to Current Focus on Human Cancer Stem Cells. Mol. Cells. 2018;41:73–82. doi:10.14348/MOLCELLS.2018.2227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Makiuchi T., Sobue T., Kitamura T., Ishihara J., Sawada N., Iwasaki M., Sasazuki S., Yamaji T., Shimazu T., Tsugane S. Association between Green Tea/Coffee Consumption and Biliary Tract Cancer: A Population-Based Cohort Study in Japan. Cancer Sci. 2016;107:76–83. doi:10.1111/cas.12843. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Shimizu M., f*ckutomi Y., Ninomiya M., Nagura K., Kato T., Araki H., Suganuma M., Fujiki H., Moriwaki H. Green Tea Extracts for the Prevention of Metachronous Colorectal Adenomas: A Pilot Study. Cancer Epidemiol. Biomark. Prev. 2008;17:3020–3025. doi:10.1158/1055-9965.EPI-08-0528. [PubMed] [CrossRef] [Google Scholar]

59. Yang C.S., Wang X., Lu G., Picinich S.C. Cancer Prevention by Tea: Animal Studies, Molecular Mechanisms and Human Relevance. Nat. Rev. Cancer. 2009;9:429–439. doi:10.1038/nrc2641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Andreasson A., Hagström H., Sköldberg F., Önnerhag K., Carlsson A.C., Schmidt P.T., Forsberg A.M. The Prediction of Colorectal Cancer Using Anthropometric Measures: A Swedish Population-Based Cohort Study with 22 Years of Follow-Up. United Eur. Gastroenterol. J. 2019;7:1250–1260. doi:10.1177/2050640619854278. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Fujiki H., Sueoka E., Watanabe T., Suganuma M. Synergistic Enhancement of Anticancer Effects on Numerous Human Cancer Cell Lines Treated with the Combination of EGCG, Other Green Tea Catechins, and Anticancer Compounds. J. Cancer Res. Clin. Oncol. 2015;141:1511–1522. doi:10.1007/s00432-014-1899-5. [PubMed] [CrossRef] [Google Scholar]

62. Panda D., Sharma A., Shukla N.K., Jaiswal R., Dwivedi S., Raina V., Mohanti B.K., Deo S.V., Patra S. Gall Bladder Cancer and the Role of Dietary and Lifestyle Factors: A Case-Control Study in a North Indian Population. Eur. J. Cancer Prev. 2013;22:431–437. doi:10.1097/CEJ.0b013e32835f3b45. [PubMed] [CrossRef] [Google Scholar]

63. Chu C., Deng J., Man Y., Qu Y. Green Tea Extracts Epigallocatechin-3-Gallate for Different Treatments. BioMed Res. Int. 2017;2017:5615647. doi:10.1155/2017/5615647. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Salameh A., Dhein S., Mewes M., Sigusch S., Kiefer P., Vollroth M., Seeger J., Dähnert I. Anti-Oxidative or Anti-Inflammatory Additives Reduce Ischemia/Reperfusions Injury in an Animal Model of Cardiopulmonary Bypass. Saudi J. Biol. Sci. 2020;27:18–29. doi:10.1016/j.sjbs.2019.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Kasper B., Salameh A., Krausch M., Kiefer P., Kostelka M., Mohr F.W., Dhein S. Epigallocatechin Gallate Attenuates Cardiopulmonary Bypass-Associated Lung Injury. J. Surg. Res. 2016;201:313–325. doi:10.1016/j.jss.2015.11.007. [PubMed] [CrossRef] [Google Scholar]

66. Shan D., Fang Y., Ye Y., Liu J. EGCG Reducing the Susceptibility to Cholesterol Gallstone Formation through the Regulation of Inflammation. Biomed. Pharm. 2008;62:677–683. doi:10.1016/j.biopha.2007.12.008. [PubMed] [CrossRef] [Google Scholar]

67. Mahajan N., Dhawan V., Sharma G., Jain S., Kaul D. ‘Induction of Inflammatory Gene Expression by THP-1 Macrophages Cultured in Normocholesterolaemic Hypertensive Sera and Modulatory Effects of Green Tea Polyphenols’ J. Hum. Hypertens. 2008;22:141–143. doi:10.1038/sj.jhh.1002277. [PubMed] [CrossRef] [Google Scholar]

68. Ezzati M., Lopez A.D. Estimates of Global Mortality Attributable to Smoking in 2000. Lancet. 2003;362:847–852. doi:10.1016/S0140-6736(03)14338-3. [PubMed] [CrossRef] [Google Scholar]

69. Gokulakrisnan A., Jayachandran Dare B., Thirunavukkarasu C. Attenuation of the Cardiac Inflammatory Changes and Lipid Anomalies by (-)-Epigallocatechin-Gallate in Cigarette Smoke-Exposed Rats. Mol. Cell. Biochem. 2011;354:1–10. doi:10.1007/s11010-011-0785-6. [PubMed] [CrossRef] [Google Scholar]

70. Kim S.J., Li M., Jeong C.W., Bae H.B., Kwak S.H., Lee S.H., Lee H.J., Heo B.H., Yook K.B., Yoo K.Y. Epigallocatechin-3-Gallate, a Green Tea Catechin, Protects the Heart against Regional Ischemia–Reperfusion Injuries through Activation of RISK Survival Pathways in Rats. Arch. Pharm. Res. 2014;37:1079–1085. doi:10.1007/s12272-013-0309-x. [PubMed] [CrossRef] [Google Scholar]

71. Bryk D., Olejarz W., Zapolska-Downar D. Mitogen-Activated Protein Kinases in Atherosclerosis. Postȩpy Hig. I Med. Doświadczalnej (Online) 2014;68:10–22. doi:10.5604/17322693.1085463. [PubMed] [CrossRef] [Google Scholar]

72. Fan Y., Zhang Y., Tariq A., Jiang X., Ahamd Z., Zhihao Z., Idrees M., Azizullah A., Adnan M., Bussmann R.W. Food as Medicine: A Possible Preventive Measure against Coronavirus Disease (COVID-19) Phytother. Res. 2020 doi:10.1002/ptr.6770. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Khaerunnisa S., Kurniawan H., Awaluddin R., Suhartati S., Soetjipto S. Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints. 2020 doi:10.20944/preprints202003.0226.v1. [CrossRef] [Google Scholar]

74. Song J.-M., Lee K.-H., Seong B.-L. Antiviral Effect of Catechins in Green Tea on Influenza Virus. Antivir. Res. 2005;68:66–74. doi:10.1016/j.antiviral.2005.06.010. [PubMed] [CrossRef] [Google Scholar]

75. Carneiro B.M., Batista M.N., Braga A.C.S., Nogueira M.L., Rahal P. The Green Tea Molecule EGCG Inhibits Zika Virus Entry. Virology. 2016;496:215–218. doi:10.1016/j.virol.2016.06.012. [PubMed] [CrossRef] [Google Scholar]

76. Mahmood M.S., Mártinez J.L., Aslam A., Rafique A., Vinet R., Laurido C., Hussain I., Abbas R.Z., Khan A., Ali S. Antiviral Effects of Green Tea (Camellia Sinensis) against Pathogenic Viruses in Human and Animals (a Mini-Review) Afr. J. Trad. Compl. Alt. Med. 2016;13:176. doi:10.4314/ajtcam.v13i2.21. [CrossRef] [Google Scholar]

77. Xu J., Xu Z., Zheng W. A Review of the Antiviral Role of Green Tea Catechins. Molecules. 2017;22:1337. doi:10.3390/molecules22081337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Mhatre S., Srivastava T., Naik S., Patravale V. Antiviral Activity of Green Tea and Black Tea Polyphenols in Prophylaxis and Treatment of COVID-19: A Review. Phytomedicine. 2020:153286. doi:10.1016/j.phymed.2020.153286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Ohgitani E., Shin-Ya M., Ichitani M., Kobayashi M., Takihara T., Kawamoto M., Kinugasa H., Mazda O. Significant Inactivation of SARS-CoV-2 by a Green Tea Catechin, a Catechin-Derivative and Galloylated Theaflavins in Vitro. bioRxiv. 2020 doi:10.1101/2020.12.04.412098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Sodagari H.R., Bahramsoltani R., Farzaei M.H., Abdolghaffari A.H., Rezaei N., Taylor-Robinson A.W. Tea Polyphenols as Natural Products for Potential Future Management of HIV Infection - an Overview. J. Nat. Remedies. 2016;16:60–72. doi:10.18311/jnr/2016/4782. [CrossRef] [Google Scholar]

81. Levy E., Delvin E., Marcil V., Spahis S. Can Phytotherapy with Polyphenols Serve as a Powerful Approach for the Prevention and Therapy Tool of Novel Coronavirus Disease 2019 (COVID-19)? Am. J. Physiol. -Endocrinol. Metab. 2020;319:E689–E708. doi:10.1152/ajpendo.00298.2020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Zhu Y., Xie D.-Y. Docking Characterization and in Vitro Inhibitory Activity of Flavan-3-Ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. Front. Plant. Sci. 2020;11 doi:10.3389/fpls.2020.601316. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Jang M., Park Y.-I., Cha Y.-E., Park R., Namkoong S., Lee J.I., Park J. Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARS-CoV-2 3CL-Protease In Vitro. [(accessed on 21 December 2020)]; Available online: https://www.hindawi.com/journals/ecam/2020/5630838/ [PMC free article] [PubMed]

84. Menegazzi M., Campagnari R., Bertoldi M., Crupi R., Di Paola R., Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int. J. Mol. Sci. 2020;21:5171. doi:10.3390/ijms21145171. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Bae J., Kim N., Shin Y., Kim S.-Y., Kim Y.-J. Activity of Catechins and Their Applications. Biomed. Dermatol. 2020;4:8. doi:10.1186/s41702-020-0057-8. [CrossRef] [Google Scholar]

86. Lin Y.-T., Wu Y.-H., Tseng C.-K., Lin C.-K., Chen W.-C., Hsu Y.-C., Lee J.-C. Green Tea Phenolic Epicatechins Inhibit Hepatitis C Virus Replication via Cycloxygenase-2 and Attenuate Virus-Induced Inflammation. PLoS ONE. 2013;8:e54466. doi:10.1371/journal.pone.0054466. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Ghosh R., Chakraborty A., Biswas A., Chowdhuri S. Evaluation of Green Tea Polyphenols as Novel Corona Virus (SARS CoV-2) Main Protease (Mpro) Inhibitors – an in Silico Docking and Molecular Dynamics Simulation Study. J. Biomol. Struct. Dyn. 2020:1–13. doi:10.1080/07391102.2020.1779818. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Nguyen T.T.H., Woo H.-J., Kang H.-K., Nguyen V.D., Kim Y.-M., Kim D.-W., Ahn S.-A., Xia Y., Kim D. Flavonoid-Mediated Inhibition of SARS Coronavirus 3C-like Protease Expressed in Pichia Pastoris. Biotechnol. Lett. 2012;34:831–838. doi:10.1007/s10529-011-0845-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Zhang H., Liu J., Lv Y., Jiang Y., Pan J., Zhu Y., Huang M., Zhang S. Changes in Intestinal Microbiota of Type 2 Diabetes in Mice in Response to Dietary Supplementation With Instant Tea or Matcha. Can. J. Diabetes. 2020;44:44–52. doi:10.1016/j.jcjd.2019.04.021. [PubMed] [CrossRef] [Google Scholar]

90. Yamabe N., Kang K.S., Hur J.M., Yokozawa T. Matcha, a Powdered Green Tea, Ameliorates the Progression of Renal and Hepatic Damage in Type 2 Diabetic OLETF Rats. J. Med. Food. 2009;12:714–721. doi:10.1089/jmf.2008.1282. [PubMed] [CrossRef] [Google Scholar]

91. Zhang H., Jiang Y., Pan J., Lv Y., Liu J., Zhang S., Zhu Y. Effect of Tea Products on the in Vitro Enzymatic Digestibility of Starch. Food Chem. 2018;243:345–350. doi:10.1016/j.foodchem.2017.09.138. [PubMed] [CrossRef] [Google Scholar]

92. Kim J., Funayama S., Izuo N., Shimizu T. Dietary Supplementation of a High-Temperature-Processed Green Tea Extract Attenuates Cognitive Impairment in PS2 and Tg2576 Mice. Biosci. Biotechnol. Biochem. 2019;83:2364–2371. doi:10.1080/09168451.2019.1659721. [PubMed] [CrossRef] [Google Scholar]

93. Kolahdouzan M., Hamadeh M.J. The Neuroprotective Effects of Caffeine in Neurodegenerative Diseases. Cns Neurosci. 2017;23:272–290. doi:10.1111/cns.12684. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Ritchie K., Carrière I., de Mendonca A., Portet F., Dartigues J.F., Rouaud O., Barberger-Gateau P., Ancelin M.L. The Neuroprotective Effects of Caffeine: A Prospective Population Study (the Three City Study) Neurology. 2007;69:536–545. doi:10.1212/01.wnl.0000266670.35219.0c. [PubMed] [CrossRef] [Google Scholar]

95. Ullah F., Ali T., Ullah N., Kim M.O. Caffeine Prevents D-Galactose-Induced Cognitive Deficits, Oxidative Stress, Neuroinflammation and Neurodegeneration in the Adult Rat Brain. Neurochem. Int. 2015;90:114–124. doi:10.1016/j.neuint.2015.07.001. [PubMed] [CrossRef] [Google Scholar]

96. Alzoubi K.H., Mhaidat N.M., Obaid E.A., Khabour O.F. Caffeine Prevents Memory Impairment Induced by Hyperhom*ocysteinemia. J. Mol. Neurosci. 2018;66:222–228. doi:10.1007/s12031-018-1158-3. [PubMed] [CrossRef] [Google Scholar]

97. Arendash G.W., Mori T., Cao C., Mamcarz M., Runfeldt M., Dickson A., Rezai-Zadeh K., Tane J., Citron B.A., Lin X., et al. Caffeine Reverses Cognitive Impairment and Decreases Brain Amyloid-Beta Levels in Aged Alzheimer’s Disease Mice. J. Alzheimers Dis. 2009;17:661–680. doi:10.3233/JAD-2009-1087. [PubMed] [CrossRef] [Google Scholar]

98. Liu J.-B., Zhou L., Wang Y.-Z., Wang X., Zhou Y., Ho W.-Z., Li J.-L. Neuroprotective Activity of ( - )-Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity. J. Immunol. Res. 2016;2016:1–10. doi:10.1155/2016/4962351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Ettcheto M., Cano A., Manzine P.R., Busquets O., Verdaguer E., Castro-Torres R.D., García M.L., Beas-Zarate C., Olloquequi J., Auladell C., et al. Epigallocatechin-3-Gallate (EGCG) Improves Cognitive Deficits Aggravated by an Obesogenic Diet Through Modulation of Unfolded Protein Response in APPswe/PS1dE9 Mice. Mol. Neurobiol. 2019 doi:10.1007/s12035-019-01849-6. [PubMed] [CrossRef] [Google Scholar]

Health Benefits and Chemical Composition of Matcha Green Tea: A Review (2024)
Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 5365

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.